Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage.
نویسندگان
چکیده
Brain lesions induced in newborn mice or rats by the glutamatergic agonists ibotenate (acting on NMDA and metabotropic receptors) or S-bromowillardiine (acting on AMPA-kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage associated with cerebral palsy. Exogenous and endogenous cannabinoids have received increasing attention as potential neuroprotective agents in a number of neurodegenerative disorders of the adult. One recent study showed neuroprotection by the cannabinoid agonist WIN-55212 in a newborn rat model of acute severe asphyxia. The present study was designed to assess the neuroprotective effects of the endogenous cannabinoid anandamide using a well-defined rodent model of neonatal excitotoxic brain lesions. In this model, anandamide provided dose-dependent and long-lasting protection of developing white matter and cortical plate reducing the size of lesions induced by S-bromowillardiine. Anandamide had only marginal neuroprotective effect against ibotenate-induced cortical grey matter lesions. Anandamide-induced neuroprotection against AMPA-kainate receptor-mediated brain lesions were blocked by a CB1 antagonist but not by a CB2 antagonist. Furthermore, anandamide effects were mimicked by a CB1 agonist but not by a CB2 agonist. Real-time PCR confirmed the expression of CB1 receptors, but not CB2 receptors, in the untreated newborn neocortex. Finally, neuroprotective effects of anandamide in white matter involved increased survival of preoligodendrocytes and better preservation of myelination. The present study provides experimental support for the role of endocannabinoids as a candidate therapy for excitotoxic perinatal brain lesions.
منابع مشابه
Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors.
Sustained activation of AMPA and kainate receptors in rat oligodendrocytes induces cytosolic calcium overload, mitochondrial depolarization, and an increase of reactive oxygen species, resulting in cell death. Here, we provide evidence that Bax, a proapoptotic member of the Bcl-2 protein family, is involved in excitotoxic apoptotic death of oligodendrocytes and that calpain mediates Bax activat...
متن کاملDifferential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols.
Oligodendrocytes are vulnerable to overactivation of both their AMPA receptors and their high- and low-affinity kainate receptors. Depending on the intensity of the insult and the type of receptor activated, excitotoxic oligodendrocyte death mediated by these receptors has different characteristics. One important consequence at a cellular level is the ensuing oxidative stress, related to Ca2+-d...
متن کاملReceptor and post-receptor mechanisms of ischemic long-term potentiation in the striatum.
On the basis of a large body of experimental data showing that pharmacological modulation of glutamate receptors has a great impact on ischemia-induced neuronal death, excessive activation of glutamate receptors is widely accepted as one of the most important determinants in the development of tissue damage produced by cerebral ischemia (1). In spite of this evidence, howe v e r, how energy dep...
متن کاملCharacteristics of acute and chronic kainate excitotoxic damage to the optic nerve.
Macroglial cells express ionotropic glutamate receptors. In the adult optic nerve, reverse transcription-PCR showed that the native receptors are formed by subunits belonging to the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate classes. Because activation of AMPA and kainate receptors can be toxic to oligodendrocytes in vitro, I examined the nature of the damage ca...
متن کاملGlutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol.
Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 148 4 شماره
صفحات -
تاریخ انتشار 2006